If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+14x-8=0
a = 14; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·14·(-8)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{161}}{2*14}=\frac{-14-2\sqrt{161}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{161}}{2*14}=\frac{-14+2\sqrt{161}}{28} $
| n/38=39 | | y=3.2(1) | | n/24=15 | | 220/n=10n= | | b/108=¾ | | 2(d−4)=14 | | 6*(x+11)+4x-7x=2x+123-5x+3x | | 14+a=7a-4 | | 4x+8*(x+4)-9x=3x+244-3x-x | | 11*(x+8)+5-x=-x+851+3x+2 | | 0=x^2-22x+124 | | y-4y+13y=0 | | 0=x^2-18x+124 | | 9*(x+5)+3+3=2x+439-5+2 | | x2+3×2,x=5 | | x²+3x2,x=5 | | 3(3t-12)=54 | | 10*(x+4)-4x=-3x+183+4x+2x-2 | | 94,313.x2-11,657=0 | | 3(2b-4)+7=19 | | x+22.71/100=12609 | | 11*(x+4)-109+3=5x-2x+4-2 | | 5/3x+x=-17/6 | | -3-2b=7 | | 5/3(x+x)=-17/6 | | 5/3(x+x)=-17/20 | | 9*(x+6)-4-656+x=8x-5x-4 | | 50-5n=10 | | 9*(x+6)+x+3+2x=5x+689-2 | | 2,5x2+8,375=59 | | (a+1)(a-3)+(2a-3)(5-7a=) | | 2x-2+12x-1=0 |